Materials scarcity during the clean energy transition: Myths, challenges, and opportunities

Author:

Ku Anthony Y.ORCID,Kocs Elizabeth A.,Fujita Yoshiko,Haddad Andrew Z.,Gray Robert W.

Abstract

Abstract Efforts to reach net zero targets by the second half of the century will have profound materials supply implications. The anticipated scale and speed of the energy transition in both transportation and energy storage raises the question of whether we risk running out of the essential critical materials needed to enable this transition. Early projections suggest that disruptions are likely to occur in the short term for select critical materials, but at the same time these shortages provide a powerful incentive for the market to respond in a variety of ways before supply-level stress becomes dire. In April 2023, the MRS Focus on Sustainability subcommittee sponsored a panel discussion on the role of innovation in materials science and engineering in supporting supply chains for clean energy technologies. Drawing on examples from the panel discussion, this perspective examines the myth of materials scarcity, explains the compelling need for innovation in materials in helping supply chains dynamically adapt over time, and illustrates how the Materials Research Society is facilitating engagement with industry to support materials innovation, now and in the future. Graphical Abstract Highlights In this commentary, we examine the myth of materials scarcity, explain the compelling need for innovation in materials in helping supply chains dynamically adapt over time, and show how the materials research community can effectively engage with industry, policymakers, and funding agencies to drive the needed innovation in critical areas. Discussion Demand for certain materials used in clean energy technologies is forecasted to increase by multiples of current production over the next decades. This has drawn attention to supply chain risks and has created a myth that we will “run out” out of certain materials during the energy transition. The reality is that markets have multiple mechanisms to adapt over the long-term, and near-term shortages or expectations of shortages provide a powerful incentive for action. In this commentary, we highlight different ways materials innovation can help solve these issues in the near term and long term, and how the materials research community can effectively engage with industry and policymakers.

Funder

Division of Materials Research

Jacobs School of Engineering, University of California, San Diego

Advanced Manufacturing Office

Publisher

Springer Science and Business Media LLC

Reference40 articles.

1. McKinsey. Battery 2030: Resilient, sustainable and circular. Jan 16, 2023. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-and-circular. Accessed 26 Sept 2023.

2. International Energy Agency. The role of critical materials in clean energy transitions. 2022. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/executive-summary. Accessed 26 Sept 2023.

3. T.E. Graedel et al., On the materials basis of modern society. Proc. Natl. Acad. Sci. U.S.A. 112, 6295–6300 (2015)

4. C. Xu et al., Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020)

5. F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3