CVD diamond deposition processes investigation: CARS diagnostics/modeling

Author:

Hay Stephen O.,Roman Ward C.,Colket Meredith B.

Abstract

We have applied Coherent Anti-Stokes Raman Spectroscopy (CARS), using a narrowband, scanned colinear configuration, to measure temperatures, relative concentrations, and detect species in low pressure CVD of polycrystalline diamond. CARS measurements were obtained for methane, hydrogen, and acetylene in either or both a rf plasma reactor and a hot filament reactor. In the rf PACVD experiments a mixture of 1% CH4 in H2 was used at a total pressure of 5 torr. The rf power input to the plasma was 300 watts and the H2 and CH4 flow rates were 99 and 1 seem, respectively. As acetylene (C2H2) has been proposed as an intermediate in diamond growth, it was selected for the initial series of measurements. In the absence of rf power, a sensitivity of 5 mtorr was observed; in the plasma downstream of the rf coils, no observable signal attributable to C2H2 was evident. This places an upper limit to conversion of methane to acetylene at 20%, a figure representing the observed sensitivity to C2H2. In the hot filament reactor, the gas flow was 200 sccm of 1% CH4 in H2 at a total pressure of 150 torr. Under these conditions, C2H2 was detectable. Absolute concentrations were not calculated, but the observed spectra are within an order of magnitude of our sensitivity limit. This allows estimation of the C2H2 partial pressure near the substrate as 5–50 mtorr or from 0.66 to 6.6% conversion from methane. In view of this low conversion percentage, the absence of a signal in the rf experiments must be taken as inconclusive. CARS spectra of methane were also obtained in both reactors. In the rf reactor, under similar conditions to those described previously, the methane relative concentration decreased to 25% as the rf power was increased from zero to 400 watts. In the hot filament reactor, CH4 CARS signal profiles were obtained as a function of axial distance from the hot filament, and parametrically as a function of filament temperature. Comparison of these profiles, in which the observed signal decayed monotonically as the filament was approached and increased monotonically downstream of the filament, was made with theoretical calculations. This comparison showed that the fluctuations were attributable to temperature/pressure effects and not to chemistry. To determine if the observed depletion in the rf plasma was similarly attributable, the CARS signal of hydrogen was observed as a function of axial distance downstream of the rf coil centerline and parametrically as a function of rf power. In contrast to expected behavior in the thermal hot filament reactor, little rotational excitation was observed in the plasma. Rotational temperatures were assigned to hydrogen based upon comparison with theoretically derived spectra. At 450 watts of rf power, rotational temperatures of 340 K were observed 4 to 6 cm downstream of the coil, the region where the 25% decrease in CH4 was observed. Little or no density fluctuations accrue due to these temperatures, indicating that the observed depletion in methane signal is attributable to decomposition or chemical reaction in the plasma. In summary, CARS is applicable to reactant species (CH4) axial profiling in both reactors, but can be limited by sensitivity in the detection of intermediate or product species (C2H2). In addition, CARS thermometry can be utilized to profile the rotational temperatures of selected species.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3