An Approach to Modeling Particle-Based and Contact-Based Wear in CMP

Author:

Terrell Elon Jahdal,Kuo Michael,Higgs C. Fred

Abstract

ABSTRACTA volume-pixel, or “voxel”-based wear model was developed in order to predict feature-scale wear in chemical-mechanical polishing (CMP), and was compared to the measured evolution of lithographically-patterned features during full-scale CMP tests. In order to conduct this study, a lithographic technique was used in order to pattern a set of raised square features into Cu-coated silicon wafers. A two-dimensional (2D) contact profilometer was used to measure the topography of an isolated feature on the wafer both before polishing and at various intervals throughout the polishing process. For wear modeling, the voxel modeling framework involved the conversion of each of the pre-polished feature topographies into a square matrix of cuboids, which allowed for contact mechanics and wear modeling to take place between the interacting cuboids of the sample and a simulated polishing pad. After the predicted wear of the Cu feature was then compared to experiment.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3