Author:
Yau Bao-Shun,Huang Jow-Lay,Lii Ding-Fwu
Abstract
Nanocrystal-(Ti,Al)xN1-x/amorphous-SiyN1-y nanolaminate films were deposited periodically under different nitrogen flow rates. The composition, microstructure and mechanical properties of nanolaminate films were investigated by x-ray photoelectron spectroscope, x-ray diffractometer, scanning and transmission electron microscopy, atomic force microscope, and nanoindentation apparatus. Results indicated that the formation of the compound on the target surface was substantially influenced by the deposition rate, composition and crystallite size of the nanolaminate films. Nanolaminate structure with periodic compositional modulation and sharp interfaces were deposited at different nitrogen flow rate. Smaller nanocrystallite size, round-shaped grain features, smoother surface morphology, higher hardness, and reduced elastic modulus were obtained for nanolaminate films with increasing the nitrogen flow rate.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献