Author:
Shang Haixia,Rouxel Tanguy,Buckley Marc,Bernard Cedric
Abstract
The viscoelastic behavior of a soda-lime silica glass (a standard window glass) was investigated by means of Vickers indentation from room temperature to 833 K. Hardness values decrease gradually from 293 to 673 K and drop rapidly above 673 K. The flow kinetics of the glass at high temperature was analyzed in the light of atomic force microscopy observations. It was observed that densification significantly contributes to the permanent deformation at low temperatures, whereas volume conservative flow played a more and more important role as temperature was increased. Master curves of the relaxation modulus and the creep compliance were obtained from constant-rate and constant-load indentation experiments, respectively. A major finding was that the viscous flow process is nonlinear, with a sharp decrease of the apparent viscosity as the mean contact pressure increases.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献