Author:
Graeff C. F. O.,Rohrer E.,Nebel C. E.,Stutzmann M.,GUttler H.,Zachai R.
Abstract
AbstractCVD diamond films with nitrogen content varying from 10 ppm to 132 ppm have been studied by electron spin resonance (ESR), light-induced ESR (LESR) as well as spin-dependent conductivity (SDC). Two characteristic signals have been observed. A carbon-related defect line with g = 2.0029 ± 0.0002 and width 4 ± 1 G, is observed in ESR, LESR and SDC. The intensity of this line measured by ESR increases linearly with nitrogen content. For low-defect-density samples, or after illuminating the high-defect-density samples with UV light, a second signal is observed both in ESR and LESR, but not in SDC, with a central line at g = 2.0024 ± 0.001 and width 0.2 ± 0.1 G and related hyperfine satellites ≈30 G away from the central line. This line is assigned to isolated substitutional nitrogen, the so-called P1 center. The density of N-related paramagnetic states is strongly affected by illumination and heat treatments. Spin-dependent conductivity measurements show that the dark conductivity at room temperature in CVD-diamond is dominated by hopping at the g = 2.0029 defects.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献