Author:
Ding W.J.,Wu Y.J.,Peng L.M.,Zeng X.Q.,Yuan G.Y.,Lin D.L.
Abstract
The coherent fine lamellae consisting of the 2H-Mg and the 14H-type long period stacking ordered (LPSO) structure within α′-Mg matrix have been first observed in an as-cast Mg96.32Gd2.5Zn1Zr0.18 alloy. During subsequent solid solution heat treatment at 698–813 K, in addition to the lamellae within matrix, a novel lamellar X phase (Mg–8.37±1.0Zn–11.32±1.0Gd, at.%) with the 14H-type LPSO structure was transformed from the dendritical β phase, and a corresponding time–temperature–transformation (TTT) diagram was established. The 14H-type LPSO structure existing in Mg–Gd–Zn–Zr alloys derives from two variant means: the formation of LPSO structure within α′-Mg matrix and the transformation of the dendritical β phase to a lamellar X phase with the LPSO structure. The alloy solid solution treated at 773 K for 35 h exhibits higher tensile strength and better elongation than the nonheated alloy because of the lamellar X phase with the 14H-type LPSO structure and the 14H-type LPSO structure within matrix.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献