Author:
Liu Tie,Wang Qiang,Zhang Chao,Gao Ao,Li Donggang,He Jicheng
Abstract
This study is concerned with the investigation of the structural evolution occurring during isothermal annealing of an Mn-89.7 wt%Sb alloy in a high magnetic field in the semisolid state. The alloy specimens were isothermally annealed without and with an 11.5-T magnetic field for various annealing times. With the application of the magnetic field, the average characteristic radius of the primary MnSb particles increased with increasing annealing time. The primary MnSb particles were oriented with their c-plane parallel to the imposed field direction. Furthermore, the primary MnSb particles were found to align along the field direction and form chainlike structures eventually. These phenomena were attributed to the attraction and coalescence of the particles induced by the dipole–dipole interactions among them.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献