High-pressure and high-temperature sintering of nanostructured bulk NiAl materials

Author:

Wang Shanmin,He Duanwei,Zou Yongtao,Wei Jianjun,Lei Li,Li Yongjun,Wang Jianghua,Wang Wendan,Kou Zili

Abstract

Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al0.9Ni4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3