Numerical Models for the Sintering of Ceramics in a Multi-Mode Cavity

Author:

Dibben David C.,Fu Wai B.,Axas Ricky A.C. Met

Abstract

ABSTRACTWe present two distinct approaches to the numerical determination of electromagnetic field intensities which must be known before the sintering of ceramics can be modelled in a multi-mode microwave cavity. In the first, a Finite Element Method, we employ edge elements to discretise Maxwell's Equations and apply the conjugate gradient algorithm to solve the resulting system of linear algebraic equations at each time step. The second, which is based on the Method of Lines, is a variant of the Finite Difference Time Domain technique and is used to transform Maxwell's Equations into a set of time-dependent ordinary differential equations. These methods are compared with the help of three examples: a small tray of mashed potatoes placed inside a cavity, a standard waveguide partially filled with a ceramic, and a cavity inhomogeneously loaded with the same material. The good agreements which we have found give us confidence in the soundness of either approach for use in numerical simulation work.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3