Thermal conductivity of ceramics in the ZrO2-GdO1.5system

Author:

Wu Jie,Padture Nitin P.,Klemens Paul G.,Gell Maurice,García Eugenio,Miranzo Pilar,Osendi Maria I.

Abstract

Low thermal conductivity ceramics in the ZrO2–GdO1.5 system have potential in structural (refractories, thermal barrier coatings, thermal protection) and nuclear applications. To that end, the thermal conductivities of hot-pressed xGdO1.5 ·(1 – x)ZrO2 (where x = 0.05, 0.15, 0.31, 0.50, 0.62, 0.75, 0.89, and 1.00) solid solutions were measured, for the first time, as a function of temperature in the range 25 to 700 °C. On the ZrO2-rich side, the thermal conductivity first decreased rapidly with increasing concentration of GdO1.5 and then reached a plateau. On the GdO1.5-rich side, the decrease in the thermal conductivity with increasing concentration of ZrO2 was less pronounced. The thermal conductivity was less sensitive to the composition with increasing temperature. The thermal conductivity of pyrochlore Gd2Zr2O7 (x = 0.5) was higher than that of surrounding compositions at all temperatures. A semiempirical phonon-scattering theory was used to analyze the experimental thermal conductivity data. In the case of pure ZrO2 and GdO1.5, the dependence of the thermal conductivity to the absolute temperature (T) was less than 1/T. Therefore, the minimum thermal conductivity theory was applied, which better described the temperature dependence of the thermal conductivity of pure ZrO2 and GdO1.5. In the case of solid solutions, phonon scattering by cation mass fluctuations and additional scattering by oxygen vacancies on the ZrO2-rich side and by gadolinium vacancies on the GdO1.5-side seemed to account for the composition and temperature dependence of the thermal conductivity.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3