Electric explosion of amorphous iron alloy ribbons in water and in ethylene glycol

Author:

Lázár K.,Varga L. K.,Kovács-Kis V.,Stichleutner S.,Tegze A.,Klencsár Z.

Abstract

AbstractElectric explosions of amorphous ribbons (Fe45Co45Zr7B3 HITPERM, Fe73.5Si15.5B7Nb3Cu1 FINEMET, and bulk amorphous Fe71.6Mn0.6Si3.4C12.3B12.2) were studied in water and for the bulk amorphous alloy in ethylene glycol, in order to study whether the amorphous state can be preserved in the process. Formed products were collected and analyzed by Scanning Electron Microscopy, X-ray diffraction, Mössbauer spectroscopy, and High-Resolution Transmission Electron Microscopy. Chemical reactions have taken place in large extent between melted and evaporated components of ribbons and the decomposed cooling media. The oxidation reactions removed quickly the glass-forming elements (Zr, B, Si) from the metallic particles. Oxides were formed both on surface of globules and in separate phases from evaporated components. The amorphous state was partly retained in FINEMET, and to a greater extent in bulk amorphous alloy. Chemical interactions were more limited in ethylene glycol and carbon atoms formed from the decomposed coolant contributed to stabilization of amorphous phase. Graphical abstract

Funder

Centre for Energy Research

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3