Nanoindentation in multi-modal map combinations: a correlative approach to local mechanical property assessment

Author:

Magazzeni Christopher M.ORCID,Gardner Hazel M.,Howe Inigo,Gopon Phillip,Waite John C.,Rugg David,Armstrong David E. J.,Wilkinson Angus J.

Abstract

Abstract A method is presented for the registration and correlation of property maps of materials, including data from nanoindentation hardness, Electron Back-Scattered Diffraction (EBSD), and Electron Micro-Probe Analysis (EPMA). This highly spatially resolved method allows for the study of micron-scale microstructural features, and has the capability to rapidly extract correlations between multiple features of interest from datasets containing thousands of data points. Two case studies are presented in commercially pure (CP) titanium: in the first instance, the effect of crystal anisotropy on measured hardness and, in the second instance, the effect of an oxygen diffusion layer on hardness. The independently collected property maps are registered using affine geometric transformations and are interpolated to allow for direct correlation. The results show strong agreement with trends observed in the literature, as well as providing a large dataset to facilitate future statistical analysis of microstructure-dependent mechanisms. Graphical abstract

Funder

Royal Commission for the Exhibition of 1851

EPSRC

Rolls-Royce plc

University of Oxford

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3