Abstract
AbstractRealizing application specific manufacture with fusion-based additive manufacturing (F-BAM) processes requires understanding of the physical phenomena that drive evolution of microstructural attributes, such as texture. Current approaches for understanding texture evolution in F-BAM are majorly considerate of the phenomena occurring only during solidification. This hinders the comprehensive understanding and control of texture during F-BAM. In this perspective article, we discuss several physical phenomena occurring during and after solidification that can determine texture in F-BAM processed stainless steels (SS). A crystal plasticity-coupled hydrogen adsorption-diffusion modeling framework is also leveraged to demonstrate the prospects of grain boundary engineering with F-BAM for enhanced hydrogen embrittlement resistance of SS. Implications of varying thermokinetics in F-BAM for solidification behavior of SS are discussed. Additionally, microstructural attributes that are key to high temperature mechanical performance of SS are highlighted. Considerations as outlined in this perspective article will enable grain boundary engineering and application specific microstructural design of SS with F-BAM.
Graphical abstract
Funder
Office of Energy Efficiency and Renewable Energy
Office of Science
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献