Fiber Optics-Based Fourier Transform Infrared Spectroscopy for in-Situ Concentration Monitoring in OMCVD

Author:

Salim Sateria,Jensen K.F.,Driver R.D.

Abstract

AbstractFiber-based Fourier transform infrared spectroscopy for remote in-situ monitoring of organometallic delivery in organometallic chemical vapor deposition (OMCVD) is presented. The measurement is based on infrared absorbance of the organometallic reagent in a short single pass gas cell placed in the gas delivery line of an OMCVD system. The performance of the set-up is demonstrated for monitoring concentration transients during the delivery of two common OMCVD precursors, trimethylgallium (TMG) and trimethylindium (TMI). The time to reach saturation is shown to be faster for a TMG bubbler than for a TMI bubbler. This difference in delivery behavior is interpreted through a mathematical model of the gas handling lines and the monitoring gas cell. The utility of the system in monitoring temporal variations in TMI delivery is also demonstrated. Finally, the ability of the system to detect the chemical species unintentionally present in the feed lines is illustrated with the observation of methane gas from TMG and TMI bubblers that have been dormant for a period time. The methane gas is shown to quickly disappear with repeated used of the bubblers.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3