In-Situ Annealing Transmission Electron Microscopy Study of Pd/Ge/Pd/GaAs Interfacial Reactions

Author:

Radulescu F.,Mccarthy J.M.,Stach E. A.

Abstract

AbstractIn-situ TEM annealing experiments on the Pd (20 nm) / a-Ge (150 nm) / Pd (50 nm) GaAs ohmic contact system have permitted real time determination of the evolution of contact microstructure. As-deposited cross-sectional samples of equal thickness were prepared using a focused ion beam (FIB) method and then subjected to in-situ annealing at temperatures between 130-400 °C. Excluding Pd-GaAs interactions, four sequential solid state reactions were observed during annealing of the Pd:Ge thin films. First, interdiffusion of the Pd and Ge layers occurred, followed by formation of the hexagonal Pd2Ge phase. This hexagonal phase then transformed into orthorhombic PdGe, followed by solid state epitaxial growth of Ge at the contact / GaAs interface. The kinetics of the solid state reactions, which occur during ohmic contact formation, were determined by measuring the grain growth rates associated with each phase from the videotape observations. These data agreed with a previous study that measured the activation energies through a differential scanning calorimetry (DSC) method. We established that the Ge transport to the GaAs interface was dependent upon the grain size of the PdGe phase. The nucleation and growth of this phase was demonstrated to have a significant effect on the solid phase epitaxial growth of Ge on GaAs. These findings allowed us to engineer an improved two step annealing procedure that would control the shape and size of the PdGe grains. Based on these results, we have established the suitability of combining FIB sample preparation with in-situ cross-sectional transmission electron microscopy (TEM) annealing for studying thin film solid-state reactions.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3