Abstract
AbstractStacking faults in a perfect crystal can be seen as limiting structures of certain series of polytypes of that crystal. A parametrization of the energy of polytypes in terms of interaction constants between layers therefore allows for the calculation of stacking-fault energies. The first-principles pseudopotential-density-functional method is used to calculate total energies of a few simple polytypes of silicon and carbon. The energies of intrinsic and extrinsic stacking faults (γISF and γESF , respectively) in silicon and diamond that follow from these calculations are in much better agreement with available experimental numbers than in previous theoretical approaches. I find: γISF = 47 mJm-2 and γESF = 36 mJm-2 for Si, γISF = 300 mJm-2 and γESF = 253 mJm-2 for diamond. From recently published similar calculations for polytypes of silicon carbide one obtains a negative energy for the extrinsic stacking fault, if zincblende silicon carbide is taken as the unfaulted structure, suggesting the observed occurrence in nature of polytypism in silicon carbide.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献