Proposal of Metastable Spin-Polarized He as a Probe of Antiferromagnetic Transition Metal Oxide Surfaces

Author:

Swan Anna,Franzen W.,El-Batanouny M.,Martini K. M.

Abstract

ABSTRACTWe suggest a new application for elastic scattering of a metastable spin-polarized atomic helium beam at thermal energy. We demonstrate how angle-resolved measurements of the Bragg peaks of scattered surviving metastable atoms can give information about the spin-ordering of an antiferromagnetic (AF) transition metal oxide surface. In this paper, we discuss the feasibility of such measurements for NiO(100) and MnO(100), based on available information about their electronic structure and the properties of spin-polarized metastable helium. On impact with a surface, the survival probability of metastables is generally very low (<10-2). There are two possible decay mechanisms for metastables, a resonance ionization followed by auger neutralization, or an auger de-excitation process. For AF surfaces which fulfill certain requirements on their electronic structure, spin-selection rules will inhibit the decay of the metastable atoms from a favourably aligned magnetic sublattice. The survival probability will then be dramatically enhanced from the chosen sublattice, and the coherently scattered surviving metastables will reflect the periodicity of that magnetic sublattice. In contrast to other methods currently applied to magnetic systems, this method does not rely on difference spectra. Consequently, reversal of spinorientation is not necessary for the observation of magnetic ordering.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Studying long-range spin ordering on surfaces by metastable He 23S scattering;Surface and Interface Analysis;1995-02

2. High resolution He-atom scattering on NiO(100);Journal of Electron Spectroscopy and Related Phenomena;1993-12

3. Frozen spin-wave structure on the NiO(100) surface observed by metastable He23Sscattering;Physical Review Letters;1993-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3