Crystal chemical incorporation of high level waste species in aluminotitanate-based ceramics: Valence, location, radiation damage, and hydrothermal durability

Author:

Fielding P. E.,White T. J.

Abstract

A compilation is made of the crystallographic mechanisms whereby (simulated) radwaste species are incorporated in the “synroc” phases zirconolite, perovskite, hibonite, and “hollandite.” From these data and consideration of the crystal chemical criteria of valence and effective ionic radii, the most probable host phases for transuranic isotopes are identified. The distinction is drawn between incorporation of radwaste species as dilute homogeneous, continuous solid solutions and as heterogeneous, noncontinuous solid solutions. It is shown that compositional variations at the nanometer level are frequently accompanied by the generation of new interstices within extended defects, which are suitable for the location of radwaste. Nuclides that are unstable towards beta and gamma decay lead to transmutation-induced changes in stoichiometry. Crystallochemical mechanisms that minimize structural disruption during the formation of radiogenic species are discussed. Thermally promoted recovery of metamict phases, which were rendered aperiodic by direct atomic displacements of alpha-recoil nuclei, are examined in terms of recrystallization via the hierarchial arrangement of space groups. An evaluation is made of the hydrothermal durability of synroc phases under conditions likely to be experienced by the wasteform should the repository be breached by groundwaters shortly after disposal.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference208 articles.

1. 202 Ball C. (private communication).

2. Thermodynamic stability and kinetics of perovskite dissolution

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3