Characterization of Nanoclusters in MgO Created by Means of Ion Implantation.

Author:

van Huis M.A.,van Veen A.,Schut H.,Kooi B.J.,De Hosson J.Th.M.

Abstract

ABSTRACTMetal nanoclusters (NCs) of lithium, zinc, silver and gold embedded in MgO were created by means of ion implantation of Li, Zn, Ag and Au ions into single crystals of MgO(100) and subsequent thermal annealing. Nanoclusters of the compound semiconductor CdSe were obtained by implantation of both Cd and Se ions. Solid noble gas clusters were formed by Kr ion implantation. Optical and structural properties of the NCs were investigated using optical absorption spectroscopy (OAS), high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (XTEM). The mean nanocluster size is estimated from the broadening of the Mie plasmon optical absorption bands using the Doyle formula. These results are compared with the NC size as obtained from XRD (using the Scherrer formula) and from direct XTEM observations. The three methods are found to be in reasonable agreement with a mean size of 4.0 and 10 nm found for the Au and Ag clusters, respectively. Using TEM observations, the relative interface energies of MgO//Au and MgO//Ag interfaces are also determined. In the case of MgO//Au, they are found not to be in agreement with theoretical predictions in the literature. CdSe nanoclusters were found to adopt different crystal structures dependent on the size. Small ones (<5 nm) appear to have a rock salt structure, larger ones the sphalerite structure. The solid krypton NC's are under high pressure. The pressure of individual Krypton bubbles was determined from the moiré fringes

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3