Author:
Kazeoka Masaki,Hiramatsu Hidenori,Seo Won-Seon,Koumoto Kunihito
Abstract
We first measured the thermoelectric properties of layer-structured homologous compounds, (ZnO)mIn2O3 (m = integer), and reported that they would becomecandidate materials for high-temperature thermoelectric energy conversion.1–4 We further tried to improve their thermoelectric properties by partially substituting yttrium for indium in (ZnO)5In2O3. Though the ionic radius of Y3+ is larger than that of In3+, the a-axis (hexagonal system) elongated and c-axis shrank as Y was substituted for In. The thermoelectric properties were found to vary with a varying amount of Y substitution; 3% Y substitution gave rise to the largest thermoelectric figure of merit, i.e., 1.1 - 1.3 × 10-4 K-1 at 960–1100 K. The abnormal change in the lattice structure by Y substitution was responsible for the unusual behavior of the thermoelectric properties.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献