Author:
Vázquez-Vázquez C.,Kögerler P.,López-Quintela M. A.,Sánchez R. D.,Rivas J.
Abstract
The study of submicroscopic particles in already known systems has resulted in a renewed interest due to the large differences found in their properties when the particle size is reduced, and because of possible new technological applications. In this work we report the preparation of LaFeO3 particles by the sol-gel route, starting from a solution of the corresponding metallic nitrates and using urea as gelificant agent. Gels were decomposed at 200 °C and calcined 3 h at several temperatures, T, in the range 250–1000 °C. The samples were structurally characterized by x-ray diffraction (XRD) showing that the orthoferrite crystallizes at T as low as 315 °C. From the x-ray diffraction peak broadening, the particle size was determined. The size increases from 60 to 300 nm as the calcination T increases. Infrared spectroscopy was used to characterize gels and calcined samples. From these studies a mechanism for the gel formation is proposed. Study of the magnetic properties of LaFeO3 particles shows the presence of a ferromagnetic component which diminishes as the calcination temperature increases, vanishing at T = 1000 °C.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献