An Auxiliary Approach to Prediction of Binary Outcome with Bayesian Network Model: Exploration with Data for Recurrence of Breast Cancer

Author:

Ganapathy Sachit,Harichandrakumar KT,Tamilarasu Kadhiravan,Penumadu Prasanth,Nair N Sreekumaran

Abstract

Introduction: Logistic regression is the classical statistical model that is incorporated to predict a binary outcome variable. These models have theoretical assumptions of independence of predictor variables and linearity of association with the outcome in the logarithmic scale. Alternative models developed in the machine learning context like Naïve Bayes model with similar assumptions and Bayesian Network (BN) model can be used for binary prediction. Aim: To compare the predictive performance of logistic regression, Naïve Bayes and BN model in predicting the recurrence of Breast cancer. Materials and Methods: The dataset was procured from UCI Machine Learning repository on recurrence of breast cancer. The study was done on retrospective data from December 2021 to July 2022. The sample size was boosted with the bootstrapping with logistic regression model. The dataset was split into training (70%) and testing (30%) dataset for internal validation. The effect estimates of the potential prognostic variables were estimated using multiple logistic regression model. Naïve Bayes and BN model was also learnt from the training dataset. The indices of predictive accuracy were estimated for the models in both training and testing dataset. Results: Degree of malignancy and side of affected breast were found to be significant predictors of recurrence of breast cancer. BN model had the least misclassification rate and the best sensitivity in comparison to other models in spite of imbalance in outcome variable. Conclusion: BN model performed the best in comparison to logistic regression model when the assumptions of logistic regression model were violated and there is imbalance in proportion of outcome.

Publisher

JCDR Research and Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3