Co-Combustion of Tire Pyrolysis Products and Wood Pellets

Author:

Grytsenko A. V.1,Vnykova N. V.2,Pozdnyakova O. I.2

Affiliation:

1. Ukrainian Scientific Research Institute of Ecological Problems

2. Kharkov National Automobile and Highway University

Abstract

Thermal power plants remain one of the main sources of environmental pollution. The deterioration of the quality of traditional carbon-containing energy resources leads to the need to develop technologies for co-combustion of biofuel and coal at small and large power plants. The paper proposes the concept of using solid waste from tire recycling by adding to the composition of the mixed fuel “coal – wood waste” as a substitute for coal slag, which is formed during the utilization of worn-out tires by pyrolysis. The aim of the work was to determine the possibility of increasing the calorific value of wood pellets by co-firing with pyrolysis slag instead of coal without increasing the burden on the environment. At the same time, the following tasks have been set: to determine the lowest combustion heat of mixed fuels and assess its change when replacing coal with slag; to determine moisture content, total sulfur content, volatile matter yield, ash content of mixed fuels according to standard methods; to assess the change in these parameters when replacing coal with slag at the same component ratios; to determine the optimal ratios of components in mixed fuels, which will not increase the burden on the environment when replacing coal with pyrolysis slag. It has been determined that replacing coal with slag results in an increase in calorific value by 37–45 %, a decrease in ash content by 37–42 %, and an increase in the yield of volatile substances. At the same time, the sulfur content increases by 5.6–18 %. The use of traditional cleaning equipment is recommended in order to reduce the emission of sulfur dioxide. The research results make it possible to substantiate the possibility of replacing coal with slag in mixed fuels at certain ratios of components. A new direction of using solid products from recycling of rubber products, i.e. worn-out tires, has been proposed by the pyrolysis method in mixed fuels “slag-wood pellets” for small and medium-sized power plants.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference33 articles.

1. Yarmolchick Yu. Р., Schröger R., Haberfelner H., Pichler M., Kostić D., Moroz G. V. (2020) Combined Combustion of Various Industrial Waste Flows in Boiler Furnaces. Part 2. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 63 (6), 526–540. https://doi.org/10.21122/1029-7448-2020-63-6-526-540 (in Russian).

2. Yarmolchick Yu. Р., Schröger R., Haberfelner H., Pichler M., Kostić D., Moroz G. V. (2020) Combined Combustion of Various Industrial Waste Flows in Boiler Furnaces. Part 1. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 63 (3), 236–252. https://doi.org/10.21122/1029-7448-2020-63-3-236-252 (in Russian).

3. Zhovmir N. M., Geletukha G. G., Zheleznaya T. A., Slenkin M. V. (2006) Review of Technologies for Co-Firing Biomass and Coal at Power Plants of Foreign Countries. Promyshlennaya Teplotekhnika = Industrial Heat Engineering, 28 (2), 75–85 (in Russian).

4. Lyubov V. K., Ivtun’ A. E. (2016) Co-Combustion of Coal with Biofuel. Vestnik Cherepovetskogo Gosudarstvennogo Universiteta = Cherepovets State University Bulletin, (5), 16–21 (in Russian).

5. Yankovskii S. Ya. (2017) Improving the Technology of Pulverized Coal Combustion at Thermal Power Plants by Adding Fine Wood. Tomsk. 122 (in Russian).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3