Thermodynamic Analysis and Optimization of Secondary Overheating Parameters in Turbo-Expander Plants on Low Boiling Working Fluids

Author:

Ovsyannik A. V.1,Kliuchinski V. P.1

Affiliation:

1. P. O. Sukhoi State Technical University of Gomel

Abstract

The paper presents a thermodynamic analysis of secondary overheating in turbo-expander plants on low-boiling working fluids. The possibility of optimizing the parameters of the working fluid in a secondary stem superheater has been studied. The research was carried out for two typical turbo-expander cycles: with a heat exchanger at the outlet of the turbo-expander, intended for cooling an overheated low-boiling working fluid, and without a heat exchanger. Cycles in T–s coordinates were constructed for the studied schemes. The influence of pressure and temperature in the intermediate superheater on the exergetic efficiency of the turbo-expander unit was studied. Thus, the dependences of the exergetic efficiency and losses on the elements of the turbo-expander cycle are obtained when the temperature of the working fluid changes and pressure of the working fluid not changes in the intermediate superheater, and when the pressure changes and the temperature does not change. As a low-boiling working fluid, the ozone-safe freon R236EA is considered, which has a “dry” saturation line characteristic, zero ozone layer destruction potential, and a global warming potential equal to 1370. It has been determined that increasing the parameters of the low-boiling working fluid in front of the low-pressure turbo expander (regardless of the scheme of the turbo expander cycle) does not always cause an increase in the exergetic efficiency. Thus, overheating of the working fluid at a pressure exceeding the critical pressure causes a positive exergetic effect, but for each temperature there is an optimal pressure at which the efficiency will be maximum. At a pressure below the critical pressure, overheating leads to a decrease in the exergetic efficiency, and the maximum exergetic effect is achieved in the absence of a secondary steam superheater. All other things being equal, a turbo-expander cycle with a heat exchanger is more efficient than without it over the entire temperature range and pressure of the low-boiling working fluid under study.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference15 articles.

1. Chen W. J., Feng H. J., Chen L. G., Xia S. J. (2018) Optimal Performance Characteristics of Subcritical Simple Irreversible Organic Rankine Cycle. Journal of Thermal Science, 27 (6), 555–562. https://doi.org/10.1007/s11630-018-1049-5.

2. Ovsyannik A. V., Valchenko, N. A., Kovalchuk, P. A., Arshukov, A. I. (2019) Trigeneration of Energy in Carbon Dioxide Turbo-Expanders. Vestnik Gomel’skogo Gosudarstvennogo Tekhnicheskogo Universiteta imeni P. O. Sukhogo [Bulletin of Sukhoi State Technical University of Gomel], (2), 41–51 (in Russian).

3. Belov G. V., Dorokhova M. A. (2014) Rankine Organic Cycle and its Application in Alternative Power Engineering. Science and Education: Scientific Edition of Bauman MSTU, (2), 99–124. https://doi.org/10.7463/0214.0699165 (in Russian).

4. Ovsyannik A. V. (2019) Carbon Dioxide Turbine Expander Plant Producing Liquid and Gaseous Carbon Dioxide. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 62 (1), 77–87. https://doi.org/10.21122/1029-7448-2019-62-1-77-87 (in Russian).

5. Ovsyannik A. V., Kovalchuk P. A., Arshukov A. I., Kliyuchinski V. P. (2020) Trigeneration Units on Carbon Dioxide with Two-Time Overheating with Installation of Turbo Detainder and Recovery Boiler. Journal of Physics: Conference Series, 1683 (042010). https://doi.org/10. 1088/1742-6596/1683/4/042010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3