Computational and Experimental Study of Local Characteristics of the Fluidization Process of Fuel Pellets

Author:

Karmanov A. E.1,Mitrofanov A. V.1,Prikhodko E. V.1,Vasilevich S. V.2,Shpeynova N.3

Affiliation:

1. Toraighyrov University

2. Belarusian State Academy of Aviation

3. Ivanovo State Power Engineering University

Abstract

. Currently, there is a tendency to diversify the generation of heat and electricity and to improve solid fuel technologies. These trends actualize the search for mathematical tools for describing and predicting the operation of apparatuses with a fluidized bed of dispersed fuel materials. However, since the mechanics of heterogeneous media (and dispersed media in particular) is to a certain extent in its infancy in relation to the mathematical foundations of modeling, it is often difficult to predict the operation of equipment. In particular, the poor quality of mathematical basis does not allow predicting the fields of concentrations and velocities of the phases of the fluidized bed, although this knowledge serves as the fundamental basis for calculating heat and mass transfer and chemical processes. In the present work, a computational and experimental study of the local hydromechanical characteristics of a monodisperse fluidized bed has been carried out. The mathematical apparatus of the theory of Markov chains was used as a basis for modeling. The tasks were solved in a one-dimensional formulation, which implied the division of the bed in height into cells of small but finite sizes. Fluidized bed phase distributions were described by state vectors whose evolution was controlled by transition probability matrices. The elements of these matrices were matched to the physical parameters of the processes. The model was verified by comparing the calculated predictions with the data of a full-scale experiment conducted as part of the study, aimed at measuring the local velocities of the gas phase inside the fluidized bed. The experimental data with a good accuracy for engineering calculations were described by the proposed model, which makes it possible to consider it as a reliable scientific basis for the computer method for calculating installations using the fluidization technique.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3