Evolution of Microstructure and Mechanical Properties of Nanostructured NiFe Films under Influence of Heat Treatment

Author:

Fedosyuk V. M.1

Affiliation:

1. Scientific-Practical Materials Research Centre of NAS of Belarus

Abstract

. Nanostructured NiFe films were synthesized by pulsed electrolytic deposition on silicon with a gold sublayer, after which they have been subjected to to temperature treatment at 373-673 K in order to study the effect of heat treatment on the microstructure and mechanical properties of the objects under study. High-resolution atomic force microscopy has made it possible  to trace the stages of  microstructure evolution under the  influence of  heat treatment, including the process of  nonlinear increase in grain growth and two-stage agglomeration. It is shown that with an increase in heat treatment temperature to 673 K, the grain size increases from 68 to 580 nm in comparison with the initial sample, undergoing agglomeration processes at temperatures of  100 and 300 °C. The mechanical properties of nanostructured NiFe films have been studied by the nanoindentation method. The dependences of the hardness of Young’s modulus and the values of the resistance to elastoplastic deformation on depth have been obtained and analyzed in the paper. This approach has permitted to reveal differences in the behavior of the mechanical properties of the surface layer and the internal volume of the film under the action of different heat treatment temperatures, as well as to demonstrate the opposite reaction of different material layers to an increase in temperature. As a result of a thorough analysis of the deformation curves of nanoindentation, it has been found that the homogenization of the surface in combination with the activation of oxidation processes leads to the strengthening of near-surface layer of NiFe films. At the same time, the internal volume of the material is characterized by a nonlinear decrease in hardness and Young’s modulus with an increase in the heat treatment temperature. The explanation for this phenomenon has been found in the complex effect of a decrease in the number of grain boundaries (due to an increase in the average grain size with increasing temperature) and an increase in the concentration of gold atoms diffusing from the sublayer more actively with an increase in the processing temperature of NiFe films.

Publisher

Belarusian National Technical University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3