Evaluation of morphology and viability of spheroid derived from Insulin-GLase cell line: A model system to understand Type 2 Diabetes Mellitus

Author:

NINGSIH Sri SuciatiORCID,AVISSA Rizkyana,STUJANNA Endin Nokik,LISTYANINGSIH Erlin,YASHIRO Takashi,n SUKARYA Wawang Setiawan

Abstract

Type 2 Diabetes Mellitus (T2DM) is one of the major health issues in the world. The cellular mechanism of T2DM is still not fully understood. It could be studied by using spheroid three-dimensional (3D) culture which is considered representative of the in vivo conditions. Several types of pancreatic β cell lines have been used, one of which is the insulin-GLase (iGL) cell line. This study aims to evaluate the effect of cell density and incubation time on spheroid morphology and cell viability in order to understand which one can be considered as the best option in studying T2DM using iGL cell. Spheroid was made by using the Hanging drop method. The variations of initial seeding cells were 50, 100, 200, and 400 cells/µL then incubated for 1, 2, 3, and 4 days. The evaluated parameters in this study are spheroid morphology and cell viability. Spheroid morphology was observed by using inverted phase contrast microscope integrated with camera (Nikon) and NIS-Elements Analysis D software. Cell viability was determined by using LUNA-II™ Automated Cell Counter (Logos Biosystem). The result of this study showed that spheroid in all of the group cell concentration have formed since the first day and its diameter was significantly increased on the following days (p<0,05). The spheroid size was positively correlated with the cell density in group 50-200 cells/µL. A single and stable spheroid morphology was observed in 50-100 cells/µL group. Cell viability in 3D culture system was lower and significantly decreased since day 3 compared to 2D culture (p <0.05; 0.01). In conclusion, spheroid derived from iGL cell line with a stable morphology and good viability could be obtained from a cell concentration of 50-100 cells / µL with two days of incubation.

Publisher

Ondokuzmayis University, Faculty of Medicine

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3