Using stacked deep learning models based on PET/CT images and clinical data to predict EGFR mutations in lung cancer

Author:

Chen Song,Han Xiangjun,Tian Guangwei,Cao Yu,Zheng Xuting,Li Xuena,Li Yaming

Abstract

PurposeTo determine whether stacked deep learning models based on PET/CT images and clinical data can help to predict epidermal growth factor receptor (EGFR) mutations in lung cancer.MethodsWe analyzed data from two public datasets of patients who underwent 18F-FDG PET/CT. Three PET deep learning ResNet models and one CT deep learning ResNet model were trained as low-level predictors based on PET and CT images, respectively. A high-level Support Vector Machine model (Stack PET/CT and Clinical model) was trained using the prediction results of the low-level predictors and clinical data. The clinical data included sex, age, smoking history, SUVmax and SUVmean of the lesion. Fivefold cross-validation was used in this study to validate the prediction performance of the models. The predictive performance of the models was evaluated by receiver operator characteristic (ROC) curves. The area under the curve (AUC) was calculated.ResultsOne hundred forty-seven patients were included in this study. Among them, 37/147 cases were EGFR mutations, and 110/147 cases were EGFR wild-type. The ROC analysis showed that the Stack PET/CT & Clinical model had the best performance (AUC = 0.85 ± 0.09), with 0.76, 0.85 and 0.83 in sensitivity, specificity and accuracy, respectively. Three ResNet PET models had relatively higher AUCs (0.82 ± 0.07, 0.80 ± 0.08 and 0.79 ± 0.07) and outperformed the CT model (AUC = 0.58 ± 0.12).ConclusionUsing stack generalization, the deep learning model was able to efficiently combine the anatomic and biological imaging information gathered from PET/CT images with clinical data. This stacked deep learning model showed a strong ability to predict EGFR mutations with high accuracy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3