Application of machine learning models in predicting insomnia severity: an integrative approach with constitution of traditional Chinese medicine

Author:

Li Shenguang,Zhu Po,Cai Guoying,Li Jing,Huang Tao,Tang Wenchao

Abstract

ObjectiveThis study sought to explore the utility of machine learning models in predicting insomnia severity based on Traditional Chinese Medicine (TCM) constitution classifications, with an aim to discuss the potential applications of such models in the treatment and prevention of insomnia.MethodsWe analyzed a dataset of 165 insomnia patients from the Shanghai Minhang District Integrated Traditional Chinese and Western Medicine Hospital. TCM constitution was assessed using a standardized Constitution in Chinese Medicine (CCM) scale. Sleep quality, or insomnia severity, was evaluated using the Spiegel Sleep Questionnaire (SSQ). Machine learning models, including Random Forest Classifier (RFC), Support Vector Classifier (SVC), and K-Nearest Neighbors (KNN), were utilized. These models were optimized using Grid Search algorithm and were trained and tested on stratified patient data, with the TCM constitution classifications serving as primary predictors.ResultsThe RFC outperformed others, achieving a weighted average accuracy, precision, recall, and F1-score of 0.91, 0.94, 0.92, and 0.92 respectively, it also effectively classified the severity of insomnia with high area under receiver operating characteristic curve (AUC-ROC) values. Feature importance analysis demonstrated the Damp-heat constitution as the most influential predictor, followed by Yang-deficiency, Qi-depression, Qi-deficiency, and Blood-stasis constitutions.ConclusionThe results demonstrate the potent utility of machine learning, specifically RFC, coupled with TCM constitution classifications in predicting insomnia severity. Notably, the constitution classifications such as Damp-heat and Yang-deficiency emerged as crucial determinants, emphasizing its potential in guiding targeted insomnia treatments. This approach enables the development of more personalized and efficient interventions, thereby enhancing patient outcomes.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3