Wound Vitality in Decomposed Bodies: New Frontiers Through Immunohistochemistry

Author:

Bertozzi Giuseppe,Ferrara Michela,La Russa Raffaele,Pollice Giovanni,Gurgoglione Giovanni,Frisoni Paolo,Alfieri Letizia,De Simone Stefania,Neri Margherita,Cipolloni Luigi

Abstract

Background: The question about wound vitality and the estimation of wound age of production are two of the classic investigation fields of forensic sciences. To answer this, the techniques most frequently used in research studies are immunohistochemistry (IHC), molecular biology, and biochemistry. Despite the great data on the literature about the usefulness of IHC in forensic pathology, there is always a request for further studies, especially on tissues altered by putrefactive phenomena. In fact, the degradation of the tissues is intended as the main limiting factor to the use of this technique.Scope: The aim of this pilot study was to evaluate the immunohistochemical behavior of samples collected from decomposed bodies (in different putrefaction phases) and to relate these findings to wound vitality and postmortem interval.Materials and Methods: Samples of skin and soft tissues were collected during autopsies, which were executed on decomposed bodies, whose cause of death was concluded to be traumatic. An immunohistochemical study was performed using antibodies against CD15, CD45, IL-15, tryptase, and glycophorin-A MMPs (endopeptidases involved in degrading extracellular matrix proteins: MMP-9 and MMP-2). An immunohistochemistry (IHC) reaction was evaluated according to a qualitative method as the following legend: (0): not expressed, (+): isolated and disseminated expression, (++): expression in groups or widespread foci, and (+++): widespread expression.Results: Most of the tested markers (tryptase, glycophorin, IL15, CD 15, CD 45, and MMP9) showed to be highly expressed in the tissue of putrefied skin for 15 days.Discussion and Conclusion: Although certainly inconclusive, this experimental application demonstrated that a nonexclusive but combined use of multiple antibodies is appropriate to verify wound vitality in decomposed bodies. Among them, GPA exhibited major reliability.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3