Reduction in cardiolipin reduces expression of creatine transporter-1 and creatine transport in growing hCMEC/D3 human brain microvessel endothelial cells

Author:

Miller Donald W.,Hatch Grant M.

Abstract

The phospholipid cardiolipin (CL) regulates mitochondrial energy production. Endothelial cells of the blood-brain barrier (BBB) play a vital role in uptake of metabolites into the brain and are enriched in mitochondria. We examined how deficiency in BBB endothelial cell CL regulates the expression of selected drug and metabolite transporters and their function. Cardiolipin synthase-1 (hCLS1) was knocked down in a human brain microvessel endothelial cell line, hCMEC/D3, and CL levels and the mRNA expression of selected BBB drug and metabolite transporters examined. Mock transfected hCMEC/D3 cells served as controls. Incorporation of (14C)creatine and (14C)oleate into hCMEC/D3 cells was determined as a measure of solute metabolite transport. In addition, protein expression of the creatine transporter was determined. Knockdown of hCLS1 in hCMEC/D3 reduced CL and the mRNA expression of creatine transporter-1, p-glycoprotein and breast cancer resistance protein compared to controls. In contrast, mRNA expression of ATP binding cassette subfamily C members-1, -3, multidrug resistance-associated protein-4 variants 1, -2, and fatty acid transport protein-1 were unaltered. Although ATP production was unaltered by hCLS1 knockdown, incorporation of (14C)creatine into hCMEC/D3 cells was reduced compared to controls. The reduction in (14C)creatine incorporation was associated with a reduction in creatine transporter-1 protein expression. In contrast, incorporation of (14C)oleic acid into hCMEC/D3 cells and the mRNA expression of fatty acid transport protein-1 was unaltered by knockdown of hCLS1 compared to controls. Thus, knockdown of hCLS1 in hCMEC/D3, with a corresponding reduction in CL, results in alteration in expression of specific solute membrane transporters.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3