Disentangling transport movement patterns of trucks either transporting pigs or while empty within a swine production system before and during the COVID-19 epidemic

Author:

Picasso-Risso Catalina,Vilalta Carles,Sanhueza Juan Manuel,Kikuti Mariana,Schwartz Mark,Corzo Cesar A.

Abstract

Transport of pigs between sites occurs frequently as part of genetic improvement and age segregation. However, a lack of transport biosecurity could have catastrophic implications if not managed properly as disease spread would be imminent. However, there is a lack of a comprehensive study of vehicle movement trends within swine systems in the Midwest. In this study, we aimed to describe and characterize vehicle movement patterns within one large Midwest swine system representative of modern pig production to understand movement trends and proxies for biosecurity compliance and identify potential risky behaviors that may result in a higher risk for infectious disease spread. Geolocation tracking devices recorded vehicle movements of a subset of trucks and trailers from a production system every 5 min and every time tracks entered a landmark between January 2019 and December 2020, before and during the COVID-19 pandemic. We described 6,213 transport records from 12 vehicles controlled by the company. In total, 114 predefined landmarks were included during the study period, representing 5 categories of farms and truck wash facilities. The results showed that trucks completed the majority (76.4%, 2,111/2,762) of the recorded movements. The seasonal distribution of incoming movements was similar across years (P> 0.05), while the 2019 winter and summer seasons showed higher incoming movements to sow farms than any other season, year, or production type (P< 0.05). More than half of the in-movements recorded occurred within the triad of sow farms, wean-to-market stage, and truck wash facilities. Overall, time spent at each landmark was 9.08% higher in 2020 than in 2019, without seasonal highlights, but with a notably higher time spent at truck wash facilities than any other type of landmark. Network analyses showed high connectivity among farms with identifiable clusters in the network. Furthermore, we observed a decrease in connectivity in 2020 compared with 2019, as indicated by the majority of network parameter values. Further network analysis will be needed to understand its impact on disease spread and control. However, the description and quantification of movement trends reported in this study provide findings that might be the basis for targeting infectious disease surveillance and control.

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3