Direct Ink Writing of Materials for Electronics-Related Applications: A Mini Review

Author:

Hou Zhenzhong,Lu Hai,Li Ying,Yang Laixia,Gao Yang

Abstract

Recently, the fabrication of electronics-related components via direct ink writing (DIW) has attracted much attention. Compared to the conventionally fabricated electronic components, DIW-printed ones have more complicated structures, higher accuracy, improved efficiency, and even enhanced performances that arise from well-designed architectures. The DIW technology allows directly print materials on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Here, recent developments in DIW printing of emerging components for electronics-related applications are briefly reviewed, including electrodes, electronic circuits, and functional components. The printing techniques, processes, ink materials, advantages, and properties of DIW-printed architectures are discussed. Finally, the challenges and outlooks on the manufacture of 3D structured electronic devices by DIW are outlined, pointing out future designs and developments of DIW technology for electronics-related applications. The combination of DIW and electronic devices will help to improve the quality of human life and promote the development of science and society.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3