Free-edge effect on the tensile properties of 3D woven composites

Author:

Wu Zengwen,Li Ce,Liao Feng,Liu Gang,Zeng Shan

Abstract

Free-edge effect is one of the factors affecting the mechanical properties of three-dimensional woven composites under tensile load. However, current research is relatively poorly understood regarding the effect of free-edge on the stiffness and strength of the material. This paper aims at examining the influence of free-edge effect on the mechanical properties of 3D woven composites under tension through experimental and simulation methods. The three-dimensional digital image correlation (DIC) technique is used to collect the full-field strains on the specimen surface during the test, and the stress-strain differences in different regions in the width direction are analyzed, and the overlap of the curves in each region is found to be high, indicating that the boundary effect has a small influence on the tensile properties of 3D woven composites. Experimental studies are conducted on specimens of different widths (within the range of 15–20 mm), and the results indicate that the differences in mechanical properties of 3D woven composites under tension loading in this width range are not significant. A progressive damage finite element model is developed for calculation and compared with experimental results. It is found that the tensile properties of the material decreased when the width of the specimen is less than twice the size of the single cell. This study can provide certain data support for the study of the mechanical properties of 3D woven composites and enable the subsequent more in-depth study to provide a certain foundation.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3