Optimization of surface roughness in milling of EN 24 steel with WC-Coated inserts using response surface methodology: analysis using surface integrity microstructural characterizations

Author:

Patil Shashwath,Sathish Thanikodi,Rao P. S.,Prabhudev M. S.,Vijayan V.,Rajkumar S.,Sharma Shubham,Kumar Abhinav,Abbas Mohamed,Makki Emad

Abstract

Introduction: Among alloys of medium-carbon and high-strength steel, EN 24 steel is characterised by its nickel-chromium-molybdenum composition. EN 24 steel is highly suitable for application in heavy-duty projects due to its notable resilience to damage, especially when exposed to low temperatures. With the objective of minimising surface irregularities, this research endeavours to enhance the milling process of EN 24 steel by employing coated tungsten carbide (WC) tool inserts.Methods: Feed rate, cutting speed, depth of cut, and cutting fluid are all crucial process factors in the experimental investigation. Four distinct levels are applied to each factor. The research utilises the Design of Experiments (DOE)-based Central Composite Design of Response Surface Methodology. To predict output parameters, mathematical models are developed utilising analysis of variance (ANOVA) for optimisation purposes.Results and discussions: Through the utilisation of multi-objective optimisation, the optimal combination for tungsten carbide inserts was determined, which provided surface irregularities of 0.301 µm. Cutting speed (CS) of 149.507 m/min, feed rate (FR) of 340.27 mm/min, depth of cut (DOC) of 0.599 mm, and cutting fluid (CF) of 12.50 L/min are the optimal parameters. The surface morphologies of the machined workpiece at particular parameter values can be discerned through scanning electron microscope (SEM) analysis, yielding significant insights. The optimal parameters that have been identified provide practical recommendations for improving the milling method of EN 24 steel when tungsten carbide inserts are utilised. Understanding the milling process in its entirety is facilitated by SEM analysis of surface morphologies and microstructures under particular cutting conditions. The morphology and surface irregularities of the machined workpiece are evaluated using profilometry, which provides additional insight into surface integrity. The discourse investigates the potential applications and implications of the results, as well as suggests directions for further study concerning the enhancement of milling processes for similar steel alloys.

Publisher

Frontiers Media SA

Reference99 articles.

1. Empirical investigations during WEDM of Ni-27Cu-3.15Al-2Fe-1.5Mn based superalloy for high temperature corrosion resistance applications;Aggarwal;Mater. (MDPI) J.,2020

2. Optimization and finite element modelling of tool wear in milling of inconel 625 superalloy;Akgün;J. Polytechnic,2020

3. Application of Taguchi method in the optimization of turning parameters for surface roughness;Akhyar;Int. J. Sci. Eng. Technol.,2008

4. A review of recent methods for tool wear reduction in electrical discharge machining;Amoljit Singh;Surf. Rev. Lett.,2020

5. A state-of-the-art review on the intelligent tool Holders in machining;An;Intelligent Sustain. Manuf.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3