Author:
Zeraati Malihe,Abbasi Hossein,Ghaffarzadeh Parvin,Chauhan Narendra Pal Singh,Sargazi Ghasem
Abstract
Zn–Ni electrophosphate coating is one of the most commonly used materials in industrial applications. The corrosion resistance of this coating is very important in order to achieve the minimum corrosion current of the Zn–Ni electrophosphate coating. This study described a new reliability simulation framework to determine the corrosion behavior of coating using a gene artificial neural network (ANN) to estimate the corrosion current of the coating. The input parameters of the model are temperature, pH of electroplating bath, current density, and Ni2+ concentration, and corrosion current defined as output. The effectiveness and accuracy of the model were checked by utilizing the absolute fraction of variance (R2 = 0.9999), mean absolute percentage error (MAPE = 0.0171), and root mean square error (RMSE= 0.0002). This is determined using the genetic algorithm (GA) and the optimum practice condition.
Subject
Materials Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献