Behavior of functionally graded carbon nanotube reinforced composite sandwich beams with pultruded GFRP core under bending effect

Author:

Madenci Emrah,Özkılıç Yasin Onuralp,Bahrami Alireza,Hakeem Ibrahim Y.,Aksoylu Ceyhun,Asyraf Muhammad Rizal Muhammad,Beskopylny Alexey N.,Stel’makh Sergey A.,Shcherban’ Evgenii M.,Fayed Sabry

Abstract

A novel generation of composite sandwich beams with laminated carbon fiber-reinforced polymer skins and pultruded glass fiber-reinforced polymer core materials was examined for their flexural behavior. The strength and failure mechanisms of the composite sandwich beams in flatwise and edgewise configurations were investigated using three-point static bending tests. These sophisticated composite structures must be designed and used in a variety of sectors, and our research provides vital insights into their performance and failure patterns. In comparison to the reference specimens (FGM-1), the carbon nanotube-reinforced specimens’ bending capacity was affected and ranged from −2.5% to 7.75%. The amount of the carbon nanotube addition had a substantial impact on the beams’ application level and load-carrying capacity. Particularly, the application of 0.5 wt% additive in the outermost fiber region of the beams, such as in FGM-4, led to an increase in the bending capacity. However, the stiffness values at the maximum load were decreased by 0.3%–18.6% compared to FGM-1, with the minimum level of the decrease in FGM-4. The experimental results were compared with the theoretical calculations based on the high-order shear deformation theory, which yielded an approximation between 11.99% and 12.98% by applying the Navier’s solution.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3