Grain-boundary segregation and superior mechanical properties in a multicomponent L12 Ni46.5Co24Fe8Al12.5Ti9 superlattice alloy

Author:

Liu Weihong,Chen Keyu,Yu Chunyan

Abstract

Ni3Al superlattice alloys with the L12 structure have garnered much attention due to their attractive high-temperature mechanical properties; however, their grain-boundary brittleness and low ductility in the ambient temperature range have greatly restricted their widespread application. In this study, we developed an L12 structure multicomponent Ni46.5Co24Fe8Al12.5Ti9 (at. %) superlattice alloy that notably suppressed the room-temperature intergranular brittleness and exhibited a large tensile elongation of 17.1% ± 5.2% together with a high ultimate tensile strength of 1,080.2 ± 57.4 MPa. Multiple microstructural examinations reveal an L12 equiaxed-grain microstructure, with the presence of a minor B2 phase. Moreover, the co-segregation of Fe and Co atoms, and the associated reduction or elimination of the L12 chemical order at the grain-boundary regions were characterized, which were proved to be the root cause of the suppression of intergranular brittleness and the high tensile ductility. Further theoretical calculations show that alloying of Fe and Co to binary Ni3Al reduced the ordering energy, which promoted intergranular segregation and associated disordering. This observation demonstrated that the elimination or reduction of interfacial chemical order is an effective ductilizing method for superlattice alloys.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3