Author:
Guo Lijie,Peng Xiaopeng,Zhao Yue,Liu Guangsheng,Tang Guoxing,Pan Andrew
Abstract
Cemented paste backfill (CPB) has been increasingly utilized in mines for efficient mineral obtaining and regional ground support. To guarantee the work performance, the mechanical properties of CPB have long been a topic of study among researchers. But the research progress on the tensile strength of CPB is limited, mainly because of the lack of an appropriate test method due to the low tensile strength of CPB. Therefore, instead of the conventional splitting indirect tensile strength test method, a new direct tension test method, which utilizes the specifically designed compression to tension load converter (CTLC) and dog-bone-shaped specimen, has been applied to study the direct tensile properties of CPB. In this study, the direct tensile strength (DTS) of 47 CPB mix designs were measured using CTLC, and the unconfined compressive strength (UCS) of the corresponding mix design was also tested. The experimental results showed that the increase in the binder content, solid mass content, and curing period led to higher CPB direct tensile strength, and the DTS of CPB was most sensitive to the binder content. Furthermore, the influence of the slurry mass solid content on the tensile strength of CPB was not linear. The influence of the binder content became increasingly notable with the increase in the solid content, especially if the binder content exceeded 75%. The effect of the curing period was found to be rather marginal due to the decreasing amount of un-hydrated cementitious materials left with the increase of the curing period. Overall, the DTS generated using dog-bone specimens and the CTLC apparatus are valid for better mine backfill designs. Finally, a linear correlative between UCS and DTS with a formula in the form of σDT (DTS) = 0.171 σc (UCS) was obtained, and the correlation was sufficient for further calculation of DTS using measured UCS.
Funder
National Key Research and Development Program of China
Subject
Materials Science (miscellaneous)
Reference59 articles.
1. New Test Method for Evaluating Internal Stress Due to Compression of concrete (The Splitting Tension Test)(part 1);Akazawa;J. Jpn. Soc. Civ Eng.,1943
2. A New Method for Direct Tensile Testing of concrete;Alhussainy;J. Test. Eval.,2019
3. An Experimental Study on Flexural Strength of Reinforced concrete Beams with 100% Recycled concrete Aggregate;Arezoumandi;Eng. Structures,2015
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献