A spinning method for low-torsion composite yarn with basalt fibers and staple cotton fibers

Author:

Li Wei,Peng Zhiyong,Zhang Ruicheng,Wang Xin,Li Juan,Sun Yue,Xu Weilin,Xu Duo,Liu Keshuai

Abstract

Basalt fibers play an indispensable role in aerospace as well as fireproof suits in specialty fields. However, basalt fibers usually have properties such as high temperature and corrosion resistance, severely lack comfort, and are prone to brittle fracture or splitting when subjected to bending or impact forces because of their high modulus. Although considerable efforts have been made to solve the above problems by wrapping soft staple fibers with basalt, but the problem of difficult stress balance exists in the composite process. Herein, we demonstrate that a stress balance spinning method to control the composite conformation between high stiffness basalt fibers and soft cotton fibers, possess significant modulus differences, for high spinnability and comfort composite yarns production on ring spinning. Geometric analysis demonstrated that the stress during retwisting adjusts the internal structure of the basalt fiber and changes the arrangement of exposed cotton fiber bundles, causing the fiber motion track to change from concentric helix to deformed non-concentric helix. The mechanical aspects show that over-twisted composite yarns lead to fiber exposure as well as detachment due to irregular fiber twisting, while low-twisted composite yarns can overcome residual torque and modulus differences. Afterwards, a systematic comparison of composite yarns with different parameters reveals that low-twisted composite yarns have a better helicoid structure, strength and uniformity than raw and over-twisted composite yarns.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Twisting process of basalt fibers in water: The effects of water on microscopic structure and spinning property;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3