An overview of progressive advancement in ultra-high performance concrete with steel fibers

Author:

Alkadhim Hassan Ali,Amin Muhammad Nasir,Ahmad Waqas,Khan Kaffayatullah,Umbreen-us-Sahar ,Al-Hashem Mohammed Najeeb,Mohamed Abdullah

Abstract

A progressive advance in the construction sector is attained by employing ultra-high performance concrete (UHPC) technology. Rigorous efforts have been made in this research domain to have remarkable quality levels with 150 MPa or more strength and significant durability, which was impossible previously. Steel fiber incorporation in UHPC is vital in improving its mechanical characteristics. This review on the incorporation of steel fibers in UHPC evaluates, identifies, and synthesizes research outcomes for creating a summary of current evidence that can contribute to evidence-based practice. This study summarized a review of the literature on steel fibers’ effect on UHPC, intending to explore its essential aspects. The aim is to summarize the literature in this research domain and provide guidance for future research. Moreover, the basic requirements and materials, mixing and casting, mechanical properties, modern applications, advantages and disadvantages, and future perspectives associated with steel fibers reinforced UHPC in the construction sector are discussed. It is revealed from the conducted analysis that the most widely applied keyword is “steel fibers.” Due to the graphical illustration of the contributing studies, the current work may benefit academic scholars in sharing novel techniques and ideas and establishing collaborative efforts. Furthermore, the present work reveals that steel fibers have the potential to enhance the mechanical properties of UHPC; however, the large-scale production and applications of steel fiber-reinforced UHPC are controlled by parameters like fiber content and geometry.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference198 articles.

1. Experimental study of shear behavior of CFRP strengthened ultra-high-performance fiber-reinforced concrete deep beams;Abadel;Case Stud. Constr. Mater.,2022

2. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages;Abbas;Constr. Build. Mater.,2015

3. Crushed concrete as adsorptive material for removal of phosphate ions from aqueous solutions;Abetua;Water Conserv. Manag.,2021

4. A ternary model for particle packing optimization;Abu-Lebdeh;J. Compos. Sci.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3