Combined Use of eDNA Metabarcoding and Bottom Trawling for the Assessment of Fish Biodiversity in the Zhoushan Sea

Author:

Zhou Shan,Fan Chenrong,Xia Haoming,Zhang Jian,Yang Wei,Ji Dengjie,Wang Lei,Chen Li,Liu Nannan

Abstract

With the increase in fishing intensity and the intensification of marine pollution, the fishery resources in the Zhoushan Sea are seriously degraded, and the difficulty of censusing fish diversity hampers effective management in marine fishes. Environmental DNA metabarcoding and bottom trawl methods were used to determine the ability of the methods to distinguish fish assemblages in the Zhoushan Sea. The species composition and diversity of the Zhoushan Sea were assessed via high-throughput sequencing analysis of eDNA coupled with bottom trawl fishery survey data, after which the two methods were compared. eDNA screening identified 38.2% more fish species than bottom trawls. Combining these two methods, 33 orders, 65 families, and 130 species of fishes were identified. Perciformes and Clupeiformes, the most abundant orders in the catch, represented 31.5 and 10.0% of the total fish abundance, respectively. The results of ANOSIM and redundancy analyses indicated that the fish community structure varied significantly between summer and winter, however depth and temperature being the main environmental factors influencing fish distribution. The biodiversity index was higher in summer than in winter. Thus, our work provides more detailed seasonal data on biodiversity in the Zhoushan Sea, which is essential for the long-term management and conservation of coastal biodiversity. Compared with traditional survey methods, eDNA determination is highly sensitive, accurate, cost-efficient, and suitable for fish diversity studies in relevant sea areas. Although this approach cannot completely replace traditional methods, our findings demonstrate that it provides a reliable complementary method for assessing fish diversity in marine ecosystems.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3