A real-time passive acoustic monitoring system to detect Yangtze finless porpoise clicks in Ganjiang River, China

Author:

Li Weilun,Qiu Jiansong,Lei Peiyu,Chen Xiaohong,Fan Fei,Deng Xiaojun,Dai Yingen,Deng Yanqing,Wang Kexiong,Mei Zhigang

Abstract

Phocoenidae live in fresh, coastal waters where they often share a significant portion of their habitat with humans. As a result, local activities (e.g., coastal fisheries and shipments) cause underwater noise pollution and threaten their ecosystem. To better conserve the habitat of porpoises, we aimed to study their activities in these waters by recording their echolocation clicks using a passive acoustic monitoring (PAM) system. However, because the off-line PAM instruments were often used in the past that need to be periodically deployed and recovered, data acquisition is typically obtained and analyzed in batches, rather than in real-time. A real-time PAM detection system would help minimize the impact of underwater noise on approaching porpoises. Furthermore, issues of bad quality data–with gaps due to loss or damage of the off-line PAM instruments–could be avoided with a real-time detection system. Therefore, in this study, we developed the Real-time Porpoise Click Detector-II (RPCD-II), equipped with a digital hydrophone, main memory (2 TB storage), a central processing unit, and a wireless transmission module. We deployed the RPCD-II under a docked fishing vessel at the Ganjiang River in Yangzi Zhou Town Fisheries Village, Nanchang City (8–9 December 2021), where it recorded signals of Yangtze finless porpoise and produced a real-time report. To validate the results of RPCD-II, another underwater sound recorder, the SoundTrap 300HF (ST), was also set up (as a control device) under the docked fishing vessel. Both devices recorded consistent results of 9330 clicks, further demonstrating RPCD-II’s ability for the real-time detection of Yangtze finless porpoise in the field.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3