Trapping of Microplastics in Halocline and Turbidity Layers of the Semi-enclosed Baltic Sea

Author:

Zhou Qian,Tu Chen,Yang Jie,Fu Chuancheng,Li Yuan,Waniek Joanna J.

Abstract

Microplastic pollution in semi-enclosed seas is gaining attention since microplastics are more likely to accumulate there. However, research on the vertical distribution of microplastics and impact factors is still limited. In this study, we focus on the Baltic Sea, which has distinguished salinity stratification, and we assume that the resulting strong density stratification (halocline) can influence the vertical distribution of microplastics in the water column. Therefore, we analyzed the vertical abundance distribution, the composition, and the sizes of microplastics (27.3–5,000.0 μm) in the Baltic Sea. The results showed that microplastics comprising fibers, fragments, and films occurred throughout the water column at an abundance of 1.1–27.7 items L−1. The abundance of microplastics (3.2–27.7 items L−1) at haloclines was significantly higher than those at other water depths except the near surfaces (p < 0.05), contributing 24.1–53.2% of the microplastics in the whole water column. Small microplastics (<100 μm) were more likely to accumulate in the water layers above halocline. Moreover, the current with high turbidity might be another carrier of microplastics in the near-bottom water layer due to its strong correlation with microplastics abundance. This study provides valuable evidence for the accumulation trend of microplastics in water columns and its influencing factors in the semi-enclosed marginal sea. Further research on the vertical distribution of microplastics under the control of multiple factors should be conducted in the future.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3