Pulsed turbidite and methane seep records in the north western South China Sea since the last glacial maximum

Author:

Li Jingrui,Miao Xiaoming,Feng Xiuli,Jiang Rui,Zhao Mengwei,Dan Xiaopeng,Xiao Qianwen,Wei Jiangong

Abstract

The small-scale event layers in the continental margin contain abundant dynamic environment information, and pose a challenge to the interpretation of continuous sedimentary records, giving geological significance to their accurate identify and possible genesis. Here, pulsed turbidite layers since the last glacial maximum (LGM) in a gravity core in the northwestern South China Sea (SCS) was analyzed to investigate the precisely identification, possible causes and the role of marine environmental change during the late Quaternary in formation of these small-scale event layers in the SCS. Eight potential pulsed turbidite layers, according to the petrographic characteristics, grain size parameters and element geochemistry, were identified. Meanwhile, indicators including total sulfur (TS)/total organic carbon (TOC) ratio, CaCO3 content, and chromium-reducible sulfur (CRS) revealed these horizons were mostly related to methane seep events. Constrained by foraminifera shells AMS14C results, these events were determined to have occurred from the LGM to early Holocene, Similar records in the northern and southern slopes suggests the universal occurrence of these small-scale layers in the SCS. The comprehensive analysis showed that the development of these event layers over the past 25 ka can be divided into three stages, 25-15.5 ka, 15.5-7 ka and 7 ka to present. Late Quaternary Ocean environment changes, especially sea level and bottom water temperature, controlled the occurrence of regional small-scale event layers in the SCS. The regional scale mechanism is that the pressure and temperature change affect the stability of hydrate and the methane seepage, and thus the strata stability. Corresponding to the lowest, the rapid increase and the highest levels of the sea level and bottom water temperature, the temporal evolution pattern of small-scale event layers in the SCS showed a highest, decreased and lowest frequency, respectively. The linkage between the late Quaternary marine environmental change and turbidite deposition through gas activities in this study can act as a useful reference for further understanding the continental margin sedimentary process.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3