Sea Wave Data Reconstruction Using Micro-Seismic Measurements and Machine Learning Methods

Author:

Iafolla Lorenzo,Fiorenza Emiliano,Chiappini Massimo,Carmisciano Cosmo,Iafolla Valerio Antonio

Abstract

Sea wave monitoring is key in many applications in oceanography such as the validation of weather and wave models. Conventional in situ solutions are based on moored buoys whose measurements are often recognized as a standard. However, being exposed to a harsh environment, they are not reliable, need frequent maintenance, and the datasets feature many gaps. To overcome the previous limitations, we propose a system including a buoy, a micro-seismic measuring station, and a machine learning algorithm. The working principle is based on measuring the micro-seismic signals generated by the sea waves. Thus, the machine learning algorithm will be trained to reconstruct the missing buoy data from the micro-seismic data. As the micro-seismic station can be installed indoor, it assures high reliability while the machine learning algorithm provides accurate reconstruction of the missing buoy data. In this work, we present the methods to process the data, develop and train the machine learning algorithm, and assess the reconstruction accuracy. As a case of study, we used experimental data collected in 2014 from the Northern Tyrrhenian Sea demonstrating that the data reconstruction can be done both for significant wave height and wave period. The proposed approach was inspired from Data Science, whose methods were the foundation for the new solutions presented in this work. For example, estimating the period of the sea waves, often not discussed in previous works, was relatively simple with machine learning. In conclusion, the experimental results demonstrated that the new system can overcome the reliability issues of the buoy keeping the same accuracy.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference52 articles.

1. On-line wave prediction.;Agrawal;Mar. Struct.,2002

2. An evaluation of current and emerging in-situ ocean wave monitoring technology;Andrews;Proceedings of the Australasian Coasts and Ports 2019 Conference: Future Directions From 40 [Degrees] S and Beyond, Hobart, 10-13 September 2019. Engineers Australia,2019

3. New directional wave satellite observations: towards improved wave forecasts and climate description in southern ocean.;Aouf;Geophys. Res. Lett.,2021

4. From seismic noise to ocean wave parameters: general methods and validation: ocean wave parameters from seismic noise.;Ardhuin;J. Geophys. Res. Oceans,2012

5. Observing Sea States.;Ardhuin;Front. Mar. Sci.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3