Attributing Controlling Factors of Acidification and Hypoxia in a Deep, Nutrient-Enriched Estuarine Embayment

Author:

Zeldis John R.,Currie Kim I.,Graham Scott L.,Gall Mark P.

Abstract

Measuring and attributing controlling factors of acidification and hypoxia are essential for management of coastal ecosystems affected by those stressors. We address this using surveys in the Firth of Thames, a deep, seasonally stratified estuarine embayment adjoing the Hauraki Gulf in northern Aotearoa/New Zealand. The Firth’s catchment has undergone historic land-use intensification transforming it from native forest cover to dominance by pastoral use, increasing its riverine total nitrogen loading by ∼82% over natural levels and switching it’s predominate loading source from offshore to the catchment. We hypothesised that seasonal variation in net ecosystem metabolism [NEM: dissolved inorganic carbon (DIC) uptake/release] will be a primary factor determining carbonate and oxic responses in the Firth, and that organic matter involved in the metabolism will originate primarily by fixation within the Firth system and be driven by catchment dissolved inorganic nitrogen (DIN) loading. Seasonal ship-based and biophysical mooring surveys across the Hauraki Gulf and Firth showed depressed pH and O2 reaching pH ∼7.8 and O2 ∼4.8 mg L–1 in autumn in the inner Firth, matched by shoreward increasing nutrient loading, phytoplankton, organic matter, gross primary production (GPP) and apparent O2 utilization. A carbonate system deconvolution of the ship survey data, combined with other ship survey and mooring results, showed how CO2 partial pressure responded to seasonal shifts in temperature, NEM, phytoplankton sinking and mineralisation and water column stratification, that underlay the late-season expression of acidification and hypoxia. This aligned with seasonal shifts in net DIC fluxes determined in a coincident nutrient mass-balance analysis, showing near-neutral fluxes from spring to summer, but respiratory NEM from summer to autumn. Particulate C:N and ratios of organic C fixed by Firth GPP to that from river inputs (∼29- to 100-fold in summer and autumn) showed that the dominant source of organic matter fuelling heterotrophy in autumn was autochthonous GPP, driven by riverine DIN loading. The results signified the sensitivity of deep, long-residence time, seasonally stratifying estuaries to acidification and hypoxia, and are important for coastal resource management, including aquaculture developments and catchment runoff limit-setting for maintenance of ecosystem health.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3