Metabolic profiling of Apostichopus japonicus body wall exposed to a typical type of PBDEs: potential health risks and impact on sea cucumber health

Author:

Ding Kui,Zhuo Pengji,Ge Meiling,Liao Xiaomei,Mo Jing,Liu Shilin,Xu Qinzeng,Zhang Xuelei

Abstract

IntroductionSea cucumbers are cultivated mainly for their valuable body wall. Polybrominated diphenyl ethers are common persistent pollutants in sea waters with known impacts on aquatic animals nonetheless not yet studied for the body wall of sea cucumbers.MethodsUsing ltra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS), we investigated the metabolic impact of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on the body wall of Apostichopus japonicus. etabolite changes and metabolic pathway alterations were assessed in response to three distinct concentrations of BDE-47: 0.1 µg/L, 1.0 µg/L, and 10.0 µg/L.REsultsExposure to BDE-47 led to notable alterations in the metabolic profiles of the body wall. A total of 95~102 metabolites in the 0.1 ~ 10.0 µg/L BDE-47 treated group were altered significantly, and various disrupted metabolic pathways were identified and characterized. These metabolites and metabolic pathways were mainly involved in lipid metabolism, energy metabolism, immunity, oxidative stress, inflammation, and neurotoxicity.DiscussionThe findings of our study shed light on the potential health risks that polybrominated diphenyl ethers present to sea cucumbers. This underscores the imperative for both researchers and policymakers to delve deeper into further investigations and studies. These results indicate the necessity for enhanced monitoring and management practices within the sea cucumber aquaculture industry to mitigate the impact of these persistent organic pollutants and protect the health and safety of this valuable resource.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3