Three-dimensional acoustic propagation of noise from impact pile driving in a complex costal environment and its effects on large yellow croaker (Pseudosciaena crocea)

Author:

Xie Jiarui,Xue Ruichao,Niu Fuqiang,Chen Benqing,Yang Yanming

Abstract

The effects of high-intensity impulsive noise generated by pile driving on fish are a major concern in environmental impact assessments. Numerical acoustic models are essential for predicting underwater-acoustic-related problems in complex coastal environments prior to offshore construction. However, underwater noise modeling for impact pile driving has often been performed using simplistic propagation models that are inadequate for three-dimensional (3D) environments. A 3D parabolic equation method (PE) was established in this study to better predict broadband transmission loss (TL) from impact pile driving in complex coastal environments and its influence on the large yellow croaker (Pseudosciaena crocea). The effects of 3D propagation were investigated using two realistic scenarios with different bathymetric complexities. The values and attenuation rate of the broadband TL for the steeply sloped bottom were significantly greater than those for the flat and weakly varying bottoms over 3 km. At a water depth of 5 m, a difference of approximately 10 dB was observed between the two TL scenarios at a distance of 4.5 to 5 km. The simulation results are in reasonable agreement with the field measurement data, with a difference of less than 3 dB. The zones of behavioral response and injury in the large yellow croaker were estimated using the For3D model. The results showed that the effects of the noise generated by the impact pile driving on the large yellow croaker were evident and three-dimensional. Therefore, 3D propagation effects should be considered when analyzing the influence of underwater noise on marine animals.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Frontiers Media SA

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3